If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+19.6t+30=0
a = -4.9; b = 19.6; c = +30;
Δ = b2-4ac
Δ = 19.62-4·(-4.9)·30
Δ = 972.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19.6)-\sqrt{972.16}}{2*-4.9}=\frac{-19.6-\sqrt{972.16}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19.6)+\sqrt{972.16}}{2*-4.9}=\frac{-19.6+\sqrt{972.16}}{-9.8} $
| -17=-5+4y | | 12x=-10+12x | | 15x-1=180 | | -17=5+4y | | 35=-5(2k÷5) | | 4x2-x=2x+27 | | G(x)=2÷3x+5 | | -1/4x+14=8 | | 25x-4(4x-3)=-42 | | 7(x+1)=x-19 | | Y=4x+5x | | 6(2x+9)=0 | | 6(2x+9)=x | | 4x^2-40x+92=0 | | 20-2s=33*1.5 | | 20-2s=33 | | 7-5+3x-1=2x+7 | | 7-5+3x-1=2x+5 | | (f/2)-5=1 | | 7n-8=n+60 | | x/6-35=31 | | 7−5+3x−1=2x+3 | | -9(x+6)+8=-46 | | 2x^2-9x-180=0 | | 4=5v+4-6v | | 2−.50n=3n+16 | | 5·5n1+2·5n=5n+1 | | 5x+5/3+x-9/4=9 | | (5x+5/3)+(x-9/4)=9 | | V=4r. | | -5/2u+5/2=-4/5u-2 | | 2x+6=7x-114 |